Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 15745, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344917

RESUMEN

In Europe, Ixodes ricinus is the most important vector of human infectious diseases, most notably Lyme borreliosis and tick-borne encephalitis virus. Multiple non-natural hosts of I. ricinus have shown to develop immunity after repeated tick bites. Tick immunity has also been shown to impair B. burgdorferi transmission. Most interestingly, multiple tick bites reduced the likelihood of contracting Lyme borreliosis in humans. A vaccine that mimics tick immunity could therefore potentially prevent Lyme borreliosis in humans. A yeast surface display library (YSD) of nymphal I. ricinus salivary gland genes expressed at 24, 48 and 72 h into tick feeding was constructed and probed with antibodies from humans repeatedly bitten by ticks, identifying twelve immunoreactive tick salivary gland proteins (TSGPs). From these, three proteins were selected for vaccination studies. An exploratory vaccination study in cattle showed an anti-tick effect when all three antigens were combined. However, immunization of rabbits did not provide equivalent levels of protection. Our results show that YSD is a powerful tool to identify immunodominant antigens in humans exposed to tick bites, yet vaccination with the three selected TSGPs did not provide protection in the present form. Future efforts will focus on exploring the biological functions of these proteins, consider alternative systems for recombinant protein generation and vaccination platforms and assess the potential of the other identified immunogenic TSGPs.


Asunto(s)
Antígenos/aislamiento & purificación , Ixodes/inmunología , Enfermedad de Lyme/transmisión , Glándulas Salivales/inmunología , Proteínas y Péptidos Salivales/inmunología , Mordeduras de Garrapatas/inmunología , Infestaciones por Garrapatas/inmunología , Animales , Antígenos/sangre , Antígenos/inmunología , Borrelia burgdorferi/aislamiento & purificación , Bovinos , Técnicas de Visualización de Superficie Celular/métodos , Femenino , Humanos , Inmunización , Enfermedad de Lyme/sangre , Enfermedad de Lyme/parasitología , Masculino , Fragmentos de Péptidos/inmunología , Biblioteca de Péptidos , Conejos , Saccharomyces cerevisiae , Infestaciones por Garrapatas/parasitología
2.
Vaccines (Basel) ; 9(6)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200738

RESUMEN

Ixodes ricinus is the main vector of tick-borne diseases in Europe. An immunization trial of calves with soluble extracts of I. ricinus salivary glands (SGE) or midgut (ME) previously showed a strong response against subsequent tick challenge, resulting in diminished tick feeding success. Immune sera from these trials were used for the co-immunoprecipitation of tick tissue extracts, followed by LC-MS/MS analyses. This resulted in the identification of 46 immunodominant proteins that were differentially recognized by the serum of immunized calves. Some of these proteins had previously also drawn attention as potential anti-tick vaccine candidates using other approaches. Selected proteins were studied in more detail by measuring their relative expression in tick tissues and RNA interference (RNAi) studies. The strongest RNAi phenotypes were observed for MG6 (A0A147BXB7), a protein containing eight fibronectin type III domains predominantly expressed in tick midgut and ovaries of feeding females, and SG2 (A0A0K8RKT7), a glutathione-S-transferase that was found to be upregulated in all investigated tissues upon feeding. The results demonstrated that co-immunoprecipitation of tick proteins with host immune sera followed by protein identification using LC-MS/MS is a valid approach to identify antigen-antibody interactions, and could be integrated into anti-tick vaccine discovery pipelines.

3.
Transbound Emerg Dis ; 67 Suppl 1: 35-39, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32174041

RESUMEN

Theileriosis is a tick-borne disease caused by intracellular protozoa of the genus Theileria. The most important species in cattle are Theileria annulata and Theileria parva. Both species transform leucocyte host cells, resulting in their uncontrolled proliferation and immortalization. Vaccination with attenuated T. annulata-infected cell lines is currently the only practical means of inducing immunity in cattle. Culture media for Theileria spp. typically contain 10%-20% foetal bovine serum (FBS). The use of FBS is associated with several disadvantages, such as batch-to-batch variation, safety and ethical concerns. In this study, the suitability of serum-free media for the cultivation of Theileria-transformed cell lines was examined. Three commercial serum-free media (HL-1, ISF-1 and Hybridomed DIF 1000) were evaluated for their ability to support growth of the T. annulata A288 cell line. The generation doubling times were recorded for each medium and compared with those obtained with conventional FBS-containing RPMI-1640 medium. ISF-1 gave the shortest generation doubling time, averaging 35.4 ± 2.8 hr, significantly shorter than the 52.2 ± 14.9 hr recorded for the conventional medium (p = .0011). ISF-1 was subsequently tested with additional T. annulata strains. The doubling time of a Moroccan strain was significantly increased (65.4 ± 15.9 hr) compared with the control (47.7 ± 7.5 hr, p = .0004), whereas an Egyptian strain grew significantly faster in ISF-1 medium (43.4 ± 6.5 hr vs. 89.3 ± 24.8 hr, p = .0001). The latter strain also showed an improved generation doubling time of 73.7 ± 21.9 hr in an animal origin-free, serum-free, protein-free medium (PFHM II) compared with the control. Out of four South African T. parva strains and a Theileria strain isolated from roan antelope (Hippotragus equinus), only one T. parva strain could be propagated in ISF-1 medium. The use of serum-free medium may thus be suitable for some Theileria cell cultures and needs to be evaluated on a case-by-case basis. The relevance of Theileria cultivation in serum-free media for applications such as vaccine development requires further examination.


Asunto(s)
Enfermedades de los Bovinos/parasitología , Theileria annulata/crecimiento & desarrollo , Theileria parva/crecimiento & desarrollo , Theileriosis/parasitología , Animales , Bovinos , Línea Celular , Medio de Cultivo Libre de Suero , Leucocitos/inmunología , Leucocitos/parasitología , Linfocitos/inmunología , Linfocitos/parasitología , Esquizontes , Theileria annulata/inmunología , Theileria parva/inmunología
4.
Parasit Vectors ; 12(1): 229, 2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-31088506

RESUMEN

Hematophagous arthropods are responsible for the transmission of a variety of pathogens that cause disease in humans and animals. Ticks of the Ixodes ricinus complex are vectors for some of the most frequently occurring human tick-borne diseases, particularly Lyme borreliosis and tick-borne encephalitis virus (TBEV). The search for vaccines against these diseases is ongoing. Efforts during the last few decades have primarily focused on understanding the biology of the transmitted viruses, bacteria and protozoans, with the goal of identifying targets for intervention. Successful vaccines have been developed against TBEV and Lyme borreliosis, although the latter is no longer available for humans. More recently, the focus of intervention has shifted back to where it was initially being studied which is the vector. State of the art technologies are being used for the identification of potential vaccine candidates for anti-tick vaccines that could be used either in humans or animals. The study of the interrelationship between ticks and the pathogens they transmit, including mechanisms of acquisition, persistence and transmission have come to the fore, as this knowledge may lead to the identification of critical elements of the pathogens' life-cycle that could be targeted by vaccines. Here, we review the status of our current knowledge on the triangular relationships between ticks, the pathogens they carry and the mammalian hosts, as well as methods that are being used to identify anti-tick vaccine candidates that can prevent the transmission of tick-borne pathogens.


Asunto(s)
Mordeduras de Garrapatas/prevención & control , Enfermedades por Picaduras de Garrapatas/prevención & control , Enfermedades por Picaduras de Garrapatas/transmisión , Vacunas/inmunología , Animales , Proteínas de Artrópodos/inmunología , Borrelia , Vectores de Enfermedades , Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas/prevención & control , Femenino , Humanos , Ixodes/microbiología , Ixodes/virología , Enfermedad de Lyme/prevención & control , Masculino , Saliva
5.
Front Physiol ; 9: 1696, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30568595

RESUMEN

Anti-tick vaccines have the potential to be an environmentally friendly and cost-effective option for tick control. In vaccine development, the identification of efficacious antigens forms the major bottleneck. In this study, the efficacy of immunization with recombinant ferritin 2 and native tick protein extracts (TPEs) against Ixodes ricinus infestations in calves was assessed in two immunization experiments. In the first experiment, each calf (n = 3) was immunized twice with recombinant ferritin 2 from I. ricinus (IrFER2), TPE consisting of soluble proteins from the internal organs of partially fed I. ricinus females, or adjuvant, respectively. In the second experiment, each calf (n = 4) was immunized with protein extracts from the midgut (ME) of partially fed females, the salivary glands (SGE) of partially fed females, a combination of ME and SGE, or adjuvant, respectively. Two weeks after the booster immunization, calves were challenged with 100 females and 200 nymphs. Blood was collected from the calves before the first and after the second immunization and fed to I. ricinus females and nymphs using an in vitro artificial tick feeding system. The two calves vaccinated with whole TPE and midgut extract (ME) showed hyperemia on tick bite sites 2 days post tick infestation and exudative blisters were observed in the ME-vaccinated animal, signs that were suggestive of a delayed type hypersensitivity (DTH) reaction. Significantly fewer ticks successfully fed on the three animals vaccinated with TPE, SGE, or ME. Adults fed on the TPE and ME vaccinated animals weighed significantly less. Tick feeding on the IrFER2 vaccinated calf was not impaired. The in vitro feeding of serum or fresh whole blood collected from the vaccinated animals did not significantly affect tick feeding success. Immunization with native I. ricinus TPEs thus conferred a strong immune response in calves and significantly reduced the feeding success of both nymphs and adults. In vitro feeding of serum or blood collected from vaccinated animals to ticks did not affect tick feeding, indicating that antibodies alone were not responsible for the observed vaccine immunity.

6.
Parasit Vectors ; 11(1): 145, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29510749

RESUMEN

Lyme borreliosis (LB) and other Ixodes ricinus-borne diseases (TBDs) are diseases that emerge from interactions of humans and domestic animals with infected ticks in nature. Nature, environmental and health policies at (inter)national and local levels affect the risk, disease burden and costs of TBDs. Knowledge on ticks, their pathogens and the diseases they cause have been increasing, and resulted in the discovery of a diversity of control options, which often are not highly effective on their own. Control strategies involving concerted actions from human and animal health sectors as well as from nature managers have not been formulated, let alone implemented. Control of TBDs asks for a "health in all policies" approach, both at the (inter)national level, but also at local levels. For example, wildlife protection and creating urban green spaces are important for animal and human well-being, but may increase the risk of TBDs. In contrast, culling or fencing out deer decreases the risk for TBDs under specific conditions, but may have adverse effects on biodiversity or may be societally unacceptable. Therefore, in the end, nature and health workers together must carry out tailor-made control options for the control of TBDs for humans and animals, with minimal effects on the environment. In that regard, multidisciplinary approaches in environmental, but also medical settings are needed. To facilitate this, communication and collaboration between experts from different fields, which may include patient representatives, should be promoted.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Encefalitis Transmitida por Garrapatas/prevención & control , Ixodes/parasitología , Enfermedad de Lyme/prevención & control , Animales , Control de Enfermedades Transmisibles/economía , Control de Enfermedades Transmisibles/legislación & jurisprudencia , Costo de Enfermedad , Encefalitis Transmitida por Garrapatas/economía , Encefalitis Transmitida por Garrapatas/epidemiología , Encefalitis Transmitida por Garrapatas/transmisión , Humanos , Enfermedad de Lyme/economía , Enfermedad de Lyme/parasitología , Enfermedad de Lyme/transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...